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A robustness comparison of two market network models.

Two market network models are investigated. One of them is based on the classical Pearson correlation as
the measure of association between stocks returns, whereas the second one is based on the sign similarity
measure of association between stocks returns. We study the uncertainty of identification procedures for
the following market network characteristics: distribution of weights of edges, vertex degree distribution
in the market graph, cliques and independent sets in the market graph, and the vertex degree distribution
of the maximum spanning tree. We define the true network characteristics, the losses from the error of its
identification by observations, and the uncertainty of identification procedures as the expected value of
losses. We use an elliptically contoured distribution as a model of the multivariate stocks returns distri-
bution. It is shown that identification of statistical procedures based on the sign similarity are statistically
robust in contrast to the procedures based on the classical Pearson correlation.

Keywords: market network analysis, random variables network, measures of association, uncertainty, risk
function, distribution-free statistical procedures

1. Introduction

Mathematical models of stock market have attracted a large attention in theoretical and applied
research. In particular, these models are useful for portfolio and financial risk management(Dong et
al. (2018), I.Baltas, A.N.Yannacopoulos (2019)). One popular approach to model the stock market is
related with network analysis. Recently, methods of stock market analysis based on the corresponding
network models (Mantegna et al. (1999), Boginski et al. (2005)) are becoming increasingly widespread.
The network model of the stock market is a complete weighted graph where vertices correspond to
the stocks returns and the weights of the edges are given by some measure of association (dependence)
between the stocks returns. Such model allows to investigate the hierarchical structure and clusters of the
stock market (Tumminello et al. (2010)), the most influential stocks in the market (Hero, A., Rajaratnam,
B. (2012)), the stock market dynamics (Pereira et al. (2019), Nguyen et al. (2019)), investment portfolios
(Kalyagin et al. (2014)) and other stock market characteristics (see Chi et al. (2010), Marti et al. (2019)
and Kalyagin et al. (2014) for a large bibliography on the subject).

To filter the most valuable information from a network model different network structures (sub-
graphs of the complete weighted graph) and their characteristics can be considered. Popular market
network structures are: the market graph, cliques and independent sets of the market graph (Boginski
et al. (2005)), and the maximum spanning tree (MST) of the network model (Mantegna et al. (1999)).
Using this approach different stock markets for different countries were investigated (see, for example,
Coronnello et al. (2005), Garas A., Argyrakis P. (2007), Huang et al. (2009), Jung et al. (2006), Tabak
et al. (2010), Nguyen et al. (2019)). At the same time in these studies there is a big lack of analysis of
the reliability of the findings.

Most of publications deal with Pearson correlation as the measure of association (dependence) be-
tween stocks returns. This measure is the most appropriate measure of dependence between random
variables under the assumption of Gaussian distributions for the stock returns. Generally, however,
the Gaussian distribution hypothesis is not confirmed by real stock market data. Elliptically contoured
distributions are a natural generalization of Gaussian distributions which are widely used in financial
modeling Gupta et al. (2013). In the case of elliptically contoured distributions other measures of asso-
ciation (dependence) can be more appropriate than Pearson correlation. This leads to different market
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network models. The following question becomes important: how does the reliability of the results of
market network analysis differ across different network models?

To answer this question we consider the market network as a random variable network (Kalyagin
et al. (2017)) and investigate the uncertainty of statistical procedures for network structures identifica-
tion. A random variable network is a pair (X ,γ) where X = (X1, . . . ,XN) is a random vector (vector of
stock returns), and γ is a measure of association (dependence) between the components of the vector X
(measure of association between stock returns). In our study, we consider a large class of elliptically
contoured distributions of the vector X (Gupta et al. (2013)) and two measures of association: Pear-
son correlation and an alternative measure of association, sign similarity, introduced in (Bautin et al.
(2013)). We study the reliability (uncertainty) of identification procedures for the following network
characteristics: distribution of weights of edges, degree distribution in the market graph, cliques and
independent sets in the market graph and the degree distribution in the maximum spanning tree. In the
framework of the concept of random variable network we define the true network characteristics, the
losses from the errors of its identification by observations, and the uncertainty of identification proce-
dures as the value of the associated risk function (expected value of losses). Special attention is paid
to the dependence of the uncertainty on distribution of the vector X . Procedures with uncertainty not
depending on distribution are of practical interest. We call such procedures distribution-free statistical
procedures (Kendall, M. G., Stuart, A. (1979)).

In our study we consider a distribution-free statistical procedure to be a robust statistical procedure in
the sense that the associated risk function is robust with respect to the distribution used for the analysis.
The term robustness is used in science in different senses. In robust optimization one is looking for
the worst case solution of optimization problem under the condition that the parameters of the problem
lie in an uncertainty set. Such approach was recently applied to robust CVaR (Conditional Value at
Risk) portfolio optimization with uncertainty set described by a parallelepiped of observed values of
returns (Kara et al. (2019)). In statistical parameter estimation robustness means weak dependence of
estimations on weak perturbation of distribution (see Huber (1981), Schevlyakov, Hannu Oja (2016)).
In the present paper robustness means independence or weak dependence of the risk function of network
structure identification procedures on distribution from a specific class.

Robustness in the latter sense was investigated in (Bautin et al. (2014), Kalyagin et al. (2017)).
In (Kalyagin et al. (2017)) two market network models (sign similarity network and Pearson corre-
lation network) with elliptically contoured distribution of vector X = (X1, . . . ,XN) were theoretically
investigated. Following the paper (Kalyagin et al. (2017)), the sign similarity network is the random
variable network where the measure γi, j = γ(Xi,X j) is a probability of sign coincidence of random vari-
ables Xi,X j, and the Pearson correlation network is the random variable network where the measure
γi, j = γ(Xi,X j) is a Pearson correlation between random variables Xi,X j. It was proved that network
models and network structures (the market graph and MST) generated by the sign similarity and Pear-
son correlation networks are equivalent. In addition, it was proved that statistical procedures for the
market graph and MST identification are robust (distribution free) in sign similarity network. In (Bautin
et al. (2014)) it was shown by simulations that the procedures for the market graph and the maximum
spanning tree (MST) identification are not robust in the Pearson correlation network unlike procedures
for the market graph and the MST identification in sign similarity network. For the simulations, the
mixture of multivariate normal and Student distributions was used. The robustness of identification
procedures for other network characteristics was not investigated.

The aim of the present article is to demonstrate how uncertainty of the market network analysis is
related with the chosen network model. The following characteristics that are widely used in market
network analysis (Marti et al. (2019)) are studied: distribution of weights of edges, degree distribution
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in the market graph, cliques and independent sets in the market graph and degree distribution in the
maximum spanning tree. It is shown that uncertainty of identification procedures in the sign similarity
network does not depend on the distribution of the vector of returns (robust identification) while un-
certainty of identification procedures in the Pearson correlation network essentially depends on (non
robust identification). This dependence is investigated for different markets and different periods of
observations.

The paper is organized as follows: in section 2 basic definitions and notations are presented; in
section 3 the concepts of robustness are presented; in section 4 the loss and risk functions are proposed;
in section 5 the results of robustness investigation are discussed, and in section 6 some remarks are given
and the obtained results are discussed.

2. Basic definitions and notations

Our research is based on the concept of random variables network (Kalyagin et al. (2017)). A
random variables network is a pair (X ,γ), where X = (X1, . . . ,XN) is a random vector and γ is a measure
of dependence between random variables. Denote by γi, j = γ(Xi,X j). One can consider different random
variables networks according the distribution of vector X and the chosen measure of dependence γ . In
the article it is assumed that the vector X has elliptically contoured distribution with a density (Anderson
(2003)):

f (x) = |Λ |−1g((x−µ)′Λ−1(x−µ)), (2.1)

where x ∈ RN , µ ∈ RN , Λ is a symmetric positive definite matrix, g(x) > 0, and the function g(x)
satisfies the condition ∫

∞

−∞

. . .
∫

∞

−∞

g(x′x)dx1 . . .dxN = 1,

where x′x=∑
N
i=1 x2

i . This class of distributions includes in particular the multivariate normal distribution
with density

fgauss(x; µ,Λ) =
1

(2π)N/2|Λ |1/2 exp(−1
2
(x−µ)′Λ−1(x−µ)),

the multivariate Student distribution with k degrees of freedom with density

fSt,k(x; µ,Λ) =
1

(kπ)N/2|Λ |1/2

Γ ( k+N
2 )

Γ ( k
2 )

(1+
(x−µ)′Λ−1(x−µ)

k
)−

k+N
2 ,

and their mixture with density

fmix(x) = ε fgauss(x; µ,Λ)+(1− ε) fSt,k(x; µ,Λ),

where ε ∈ [0,1].
Two measures of dependence are considered. One of them is the Pearson correlation

γ
P
i, j = ρi, j =

E(Xi−EXi)(X j−EX j)√
DXiDX j

,

where EX stands for expectation, DX stands for variance.
Such measures are widely used in market network analysis (Mantegna et al. (1999), Boginski et al.

(2005)).
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An alternative measure of dependence is the probability of sign coincidence

γ
Sg
i, j = pi, j = P((Xi−EXi)(X j−EX j)> 0),

where P(A) stands for the probability of the event A.
A random variables network generates a network model that is a complete undirected weighted graph

G = (V,Γ ) where V = {1,2, . . . ,N} is the set of vertex associated with random variables X1,X2, . . . ,XN
and Γ = {γi, j : i, j = 1, . . . ,N} is the set of edge weights. It is natural to reduce the study of the network
model G = (V,Γ ) to the study of its key characteristics. In graph theory, various characteristics are
proposed: a threshold (market) graph, cliques and independent sets of the threshold graph, a maximum
spanning tree, degrees distribution, centrality, diameter, etc. In this paper we investigate the charac-
teristics of two most popular network structures in market network analysis, the market graph and the
maximum spanning tree. More specifically,

• the threshold graph (market graph, MG) of the network model G = (V,Γ ) which is defined as an
unweighted graph G′(γ0) = (V ′,E ′) : V ′ =V ;E ′ ⊆ E (where E is a set of all edges of the network
model) and E ′ = {(i, j) : γi, j > γ0}, where γ0 is a certain threshold.

• the maximum spanning tree (MST) of the network model G = (V,Γ ) which is a tree (graph
without cycles) G′ = (V ′,E ′) : V ′ =V ;E ′ ⊂ E; |E ′|= |V |−1; such that ∑(i, j)∈E ′ γi, j is maximal.

In this paper we study the following characteristics:

• A distribution of the weights of edges which is defined as the function h(x) = m, where m is the
number of edges with weights belonging to the nonoverlaping intervals (a+(k− 1)∆ ,a+ k∆)
for some ∆ > 0. To construct the function h(x) the support x ∈ [a,b] of the function h(x) is
divided on M nonoverlaping intervals of lengths ∆ = b−a

M . For any point x from the interval
(a+(k−1)∆ ,a+ k∆) function h(x) = m where m is a number of edges with weights belonging
to the interval (a+(k− 1)∆ ,a+ k∆). For the case of Pearson correlation the support is [−1,1]
and k = 1, . . . ,M, whereas for the case of the probability of sign coincidence the support is [0,1]
and k = 1, . . . ,M.

• A clique of the market graph G = (V,E) is the complete subgraph of the graph G, i.e. subgraph
G′ = (V ′,E ′) : V ′ ⊂ V,E ′ ⊂ E : ∀i, j ∈ V ′ ⇒ (i, j) ∈ E ′. The clique G1 = (V1,E1) is called the
maximum clique (MC) (in size) if for any other clique G2 = (V2,E2): |V1|> |V2|

• An independent set (IS) of the market graph G = (V,E) is an empty subgraph of G, that is,
subgraph G1 = (V1,E1) : V1 ⊂ V,E1 ⊂ E : ∀i, j ∈ V1 ⇒ (i, j) /∈ E1. The independent set G1 =
(V1,E1) is called the maximal independent set (MIS) (in size) if for any other independent set
G2 = (V2,E2) of the graph G: |V1|> |V2|.

• A degree distribution of the market graph which is defined as the 2×N matrix, where the first row
contains the possible values of the degrees of vertices 0,1, . . . ,N−1 and the second row contains
the number of vertices νi of degree i, i = 0, . . . , N−1.

• A degree distribution of the MST which is defined as the 2×N matrix, where the first row contains
the possible values of the degrees of vertices 1, . . . ,N−1 and the second row contains the number
of vertices νi of degree i, i = 1, . . . , N−1.
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The family {MG(γ0) : γ0 ∈R1} contains the most complete network model information, in particular,
the network model of the market. At the same time, cliques and independent sets characterize the cluster
structure of the market. In addition, the size of the maximum clique could be considered as an indicator
of globalization, and the size of the maximum independent set could be considered as an indicator of
the market freedom.

3. The concept of robustness

Let us assume that X has an elliptically contoured distribution with parameters µ and Λ (2.1). Let
γi, j, i, j = 1, . . . , N be the true (known) value of the dependence measure between the random variables
Xi and X j (the weight of the edge between the vertices i and j in the network model). A network
model based on γi, j, i, j = 1, . . . , N will be called a reference network model. The characteristics of
this network model, as defined in Section 2, will be referred to as the reference characteristics of the
network model.

Let γ̂i, j, i, j = 1, . . . , N be an estimation of the dependence measure between random variables
Xi and X j, constructed from the sample xi(t), i = 1, . . . , N; t = 1, . . . , n. A network model based on
γ̂i, j, i, j = 1, . . . , N will be called a sample network model. The characteristics of this network model
will be called sample characteristics of the network model.

In practice the available data involve observations of stock returns xi(t), i = 1, . . . , N; t = 1, . . . , n.
The identification problems for the networks models involve the estimation of the characteristics of a
network model through the available observations. For estimation of the Pearson correlation the sample
Pearson correlation will be used:

ri, j =
∑t(xi(t)− xi)(x j(t)− x j)√
∑t(xi(t)− xi)2(x j(t)− x j)2

,

where xi =
1
n ∑

n
t=1 xi(t)

As an estimation of the probability of sign coincidence, the frequency of sign coincidence will be used:

si, j =
1
n

n

∑
t=1

Ii, j(t),

where for the case of known µ

Ii, j =

{
1,(xi(t)−µi)(x j(t)−µ j)> 0
0,(xi(t)−µi)(x j(t)−µ j)< 0.

For the case of unknown µ , the frequency of sign coincidence has the form

smean
i, j =

1
n

n

∑
t=1

Imean
i, j (t),

where

Imean
i, j =

{
1,(xi(t)− xi)(x j(t)− x j)> 0
0,(xi(t)− xi)(x j(t)− x j)< 0.

The problem is to analyze the robustness of the estimation of the network structures characteristics
using the sample Pearson correlation or the frequency of sign coincidence. To analyze robustness we
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will use the approach proposed in (Kalyagin et al. (2017)). Consider, for example, the problem of
the market graph identification. The problem of the market graph identification is to select one of the
hypotheses:

HS1 : γi, j 6 γ0,∀(i, j), i < j,
HS2 : γ1,2 > γ0,γi, j 6 γ0,∀(i, j) 6= (1,2), i < j,
HS3 : γ1,2 > γ0,γ1,3 > γ0,γi, j 6 γ0,∀(i, j) 6= (1,2),(i, j) 6= (1,3),
. . .
HSL : γi, j > γ0,∀(i, j), i < j.

(3.1)

Hypothesis HS1 corresponds to the empty market graph G′(γ0), hypothesis HS2 corresponds to the
market graph G′(γ0) with one edge (1,2), etc., and hypothesis HSL corresponds to the complete market

graph G′(γ0). For a network model with N vertices the number of hypotheses is L = 2
N(N−1)

2 .
Hypothesis HSi , i = 1, . . . , L could be defined by the adjacency matrix G ∈ G , where G is the

set of all possible adjacency matrices. A multiple decision statistical procedure δ for market graph
identification is a map from the sample space RN×n to the decision space D = {dG,g ∈ G }, where the
decision dG is the acceptance of hypothesis HG, G ∈ G (market graph has adjacency matrix G). Let
S = (si, j), Q = (qi, j), S,Q ∈ G and

w(HS;dQ) = w(S,Q), S,Q ∈ G

be the loss from the decision dQ when hypothesis HS is true. It is assumed that w(S,S) = 0, S ∈ G .
The quality of statistical procedure δ is measured by the risk function (Kalyagin et al. (2017)).

Assume the vector X has distribution from some class K. Each distribution Pθ from the class K is
associated with some parameter θ from the parameter space Ω . The risk function is then defined by

R(S,θ ,δ ) = ∑
Q∈G

w(S,Q)Pθ (δ (x) = dQ), θ ∈ΩS,

where ΩS is the parametric region corresponding to hypothesis HS (i.e the set of distributions such that
the reference (true) network structure in (V,Γ ) has adjacency matrix S).

It is assumed that X has elliptically contoured distribution with density (2.1). In this case, the
reference market graph is defined by the matrix Λ . Therefore risk R(S,θ ,δ ) = R(Λ ,µ,g,δ ).

The statistical procedure δ is robust if R(Λ ,µ,g,δ ) = R(Λ ,δ ) (Kalyagin et al. (2017)).

4. Loss and risk functions

Let us introduce loss and risk functions for statistical procedures of network characteristic identi-
fication (estimation) or measures of the difference between reference and sample characteristics of the
corresponding network models.

Let the function h(x) be the reference distribution of edge weights and ĥ(x) be the estimate of h(x).
To measure the difference between h(x) and ĥ(x) we propose to use an expectation of the area S under
the curve |h(x)− ĥ(x)|. Therefore, W (h(x), ĥ(x)) = S(|h(x)− ĥ(x)|) and risk is Eµ,Λ ,g(S(|h(x)− ĥ(x)|)).

Let G(γ0) be the market graph, with ki denoting the reference number of vertices of degree i in
G(γ0). The estimate of ki is denoted by k̂i. To measure the difference between reference and sample
degrees distributions we propose to use Eµ,Λ ,g(∑

N−1
i=0 |ki− k̂i|), where N is the number vertices in G(γ0).

Therefore, W (ki, k̂i) = ∑
N−1
i=0 |ki− k̂i| and risk is Eµ,Λ ,g(∑

N−1
i=0 |ki− k̂i|).

To measure the difference between the maximum reference clique and the maximum sample clique
(independent sets) we propose to use the expectation of the power of the symmetric difference of the
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vertex set of the reference clique and the sample clique (independent set) i.e. Eµ,Λ ,g(∑
N
i=1 |vi− v̂i|),

where N is the number of vertices, vi is an indicator that equals 1, if vertex i is in the reference clique
(independent set) and zero otherwise, and v̂i is an indicator that equals 1, if vertex i is in the sample clique
(independent set) and zero otherwise. Then, W (vi, v̂i) = ∑

N
i=1 |vi− v̂i| and risk is Eµ,Λ ,g(∑

N
i=1 |vi− v̂i|).

To measure the difference of the degree distribution in the reference MST and sample MST we
propose to use the probability of a correct identification of the degrees distribution in the MST.

5. Results

This section presents the robustness investigation results of two types of procedures for the charac-
teristics of network models identification. Procedures of the first type are based on the sample Pearson
correlation. Procedures of the second type are based on the frequency of sign coincidence. The robust-
ness investigation is based on simulation of observations from a mixture distribution of the form:

fmix(x) = ε fgauss(x; µ,Λ)+(1− ε) fSt,k(x; µ,Λ),

where fgauss(x) is the N-dimensional normal distribution and fSt,k(x) is the N-dimensional Student dis-
tribution with k = 3 degrees of freedom. As the reference matrix Λ of the Pearson correlation network
we use matrix Λ = (λi j) where the elements λi j are Pearson correlations calculated by real market data.
For the construction of a reference sign similarity network we propose to use the relation:

γ
Sg
i, j =

1
2
+

1
π

arcsin(γP
i, j).

This relation is holds for elliptically contoured distributions (Kalyagin et al. (2017)).

5.1 Reference networks

24 models for the reference matrix Λ are used. Such models are constructed from the real data from
the stock markets of Brazil, China, France, UK, Germany, India, Russia and USA. For each market the
returns of N = 50 of the most profitable stocks of the markets are analyzed for 2010, 2011, 2012 years.

In table 1 a part of the reference matrix Λ of the Pearson correlation network corresponding to the
UK stock market for 2010 year is shown.

1,00 0,12 0,00 0,10 -0,05 -0,14 0,04 -0,02 -0,02 0,22
0,12 1,00 0,08 -0,03 -0,01 -0,03 -0,05 -0,03 0,05 -0,10
0,00 0,08 1,00 0,04 -0,06 0,02 0,02 -0,04 -0,04 -0,03
0,10 -0,03 0,04 1,00 -0,07 0,06 0,10 0,06 0,04 0,09
-0,05 -0,01 -0,06 -0,07 1,00 0,49 0,14 0,44 0,35 0,01
-0,14 -0,03 0,02 0,06 0,49 1,00 0,24 0,48 0,42 -0,09
0,04 -0,05 0,02 0,10 0,14 0,24 1,00 0,30 0,15 0,00
-0,02 -0,03 -0,04 0,06 0,44 0,48 0,30 1,00 0,45 0,04
-0,02 0,05 -0,04 0,04 0,35 0,42 0,15 0,45 1,00 0,01
0,22 -0,10 -0,03 0,09 0,01 -0,09 0,00 0,04 0,01 1,00

Table 1. A part of the reference matrix Λ of the Pearson correlation network. (UK, 2010 year)
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Based on such reference Pearson correlation network models the reference characteristics were con-
structed. In total, for 8 countries, 3 years of analysis and 5 characteristics, 8 ∗ 3 ∗ 5 = 120 of the refer-
ence characteristics of Pearson correlation network models were constructed. Examples of the reference
characteristics of the network models are given below.
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FIG. 1. Reference distribution of weights of edges in Pearson correlation network. (UK, 2010 year)
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FIG. 2. Reference degree distribution in the market graph with threshold 0.3 in reference Pearson correlation network. (UK, 2010
year)
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FIG. 3. MST in reference Pearson correlation network with degree distribution [1,1,1,1,2,2,2,2,3,3]. (UK, 2010 year)

In the same way the 120 characteristics in reference sign similarity network were constructed.

5.2 Algorithm for the calculation of the risk function

1. Choose the value of ε (ε = 0,0.1.0.2, ...,1) and reference matrix Λ .

2. Generate n (n = 100,250,1000,10000) N-dimensional (N = 50) random vectors with the mixture
distribution.

3. Calculate the sample network characteristics.

4. Calculate the loss function (measure of difference between reference and sample network charac-
teristics).

5. In order to estimate the robustness of network characteristic the experiment is repeated 10000
times and the estimate of the risk function is calculated.

Typical results are presented below.

5.3 Distribution of edge weights

In figures 4 and 5 the measure of difference between reference and sample distributions of the
edge weights as a function of the mixture parameter ε is presented. The results of the experiments
show that this measure is robust to a change of ε in the case when the distribution of edge weights is
estimated by the frequency of signs coincidence (solid and dash-doted lines) unlike the case when it is
estimated by the sample Pearson correlation (dashed line). For ε < 0.6 (ε > 0.6) procedures based on
the frequency of sign coincidence lead to less (more) errors compared to procedures based on sample
Pearson correlations. This conclusion is holds for both cases of known and unknown shift parameter.
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Similar results for the distribution of the edge weights were obtained for reference models of other
markets.

FIG. 4. The dependence of the difference measure between the reference distribution of weights of edges and it’s estimation from
ε . France, 2012. n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of
sign coincidence with unknown µ , dashed line - sample Pearson correlation.

FIG. 5. The dependence of the difference measure between the reference distribution of weights of edges and it’s estimation from
ε . India, 2011. n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of
sign coincidence with unknown µ , dashed line - sample Pearson correlation.

5.4 Degree distribution in the market graph

Figures 6 and 7 present the measure of difference between reference and sample degree distribu-
tions in the market graphs as function of mixture parameter. The results of the experiments show that
this measure is robust to a change of ε when the degree distribution is estimated by the frequency of
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sign coincidence (solid and dash-doted lines) unlike the sample Pearson correlation (dashed line). The
obtained results show that for γ0 = 0.3 and ε < 0.6 (ε > 0.6) procedures based on the frequency of sign
coincidence lead to less (more) errors compared to procedures based on the sample Pearson correlations.
However, for γ0 = 0.1 procedures based on the frequency of sign coincidence lead to less (more) errors
compared to procedures based on sample Pearson correlations for ε < 0.4 (ε > 0.4). These conclusions
are hold for both cases of known and unknown shift parameter. Similar results for the degree distribution
were obtained for reference models of other markets.

FIG. 6. The dependence of the difference measure between the reference degree distribution in market graph and it’s estimation
from ε . γ0 = 0.3. Brazil, 2011. n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line -
frequency of sign coincidence with unknown µ , dashed line - sample Pearson correlation.

FIG. 7. The dependence of the difference measure between the reference degree distribution in market graph and it’s estimation
from ε . γ0 = 0.1. USA, 2012. n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line -
frequency of sign coincidence with unknown µ , dashed line - sample Pearson correlation.
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5.5 Cliques and Independent sets

Figure 8 and 9 present measure of difference between reference and sample independent sets and
between reference and sample cliques as function of ε . The results of the experiments show that this
measure is robust to a change of ε when independent sets and cliques are estimated by the frequency of
signs coincidence (solid and dash-doted lines) unlike the sample Pearson correlation (dashed line). For
γ0 = 0.5 and ε < 0.5 (ε > 0.5) identification procedures for independent sets based on the frequency of
sign coincidence lead to less (more) errors compared to procedures based on sample Pearson correla-
tions. For γ0 = 0.5 and ε < 0.6 (ε > 0.6) identification procedures for cliques based on the frequency
of sign coincidence lead to less (more) errors compared to procedures based on sample Pearson correla-
tions. These conclusions are hold for both cases of known and unknown shift parameter. Similar results
were obtained for reference models of other stock markets.

FIG. 8. Measure of difference between the reference independent set and it’s estimation as function of ε . γ0 = 0.5. Germany, 2010.
n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of sign coincidence
with unknown µ , dashed line - sample Pearson correlation.
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FIG. 9. Measure of difference between the reference clique and it’s estimation as function of ε . γ0 = 0.5. Great Britain, 2012.
n = 250 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of sign coincidence
with unknown µ , dashed line - sample Pearson correlation.

5.6 Degree distribution in the maximum spanning tree

Figures 10 and 11 present the measure of difference between reference and sample degree distribu-
tion of MST as function of ε . The results of the experiments show that this measure is robust to a change
in the parameter of the mixture ε when the degree distribution in the MST is estimated by the frequency
of signs coincidence (solid and dash-doted lines) unlike the sample Pearson correlation (dashed line).
For ε < 0.6 (ε > 0.6) procedures based on the frequency of signs coincidence lead to more (less) proba-
bility of true decision compared to procedures based on sample Pearson correlations. This conclusion is
holds for both cases of known and unknown shift parameter. Similar results were obtained for reference
models of other stock markets.

FIG. 10. Measure of difference between the degree distribution in reference MST and it’s estimation from ε . China, 2012.
n = 10000 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of sign coincidence
with unknown µ , dashed line - sample Pearson correlation.
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FIG. 11. Measure of difference between the degree distribution in reference MST and it’s estimation from ε . Russia, 2012.
n = 10000 observations. Solid line - frequency of sign coincidence with known µ , dash-doted line - frequency of sign coincidence
with unknown µ , dashed line - sample Pearson correlation.

6. Concluding remarks

The paper proposed a methodology of uncertainty analysis for the following market network char-
acteristics: distribution of weights of edges, vertex degree distribution in the market graph, cliques and
independent sets in the market graph, and the vertex degree distribution of the maximum spanning tree.
This methodology is applied for different markets and different periods of observations. The presented
results show that identification procedures based on the sample Pearson correlation depends on the re-
turns distribution (are not robust or distribution free). On the other hand, the procedures based on sample
sign similarity (frequency of sign coincidence) are robust (distribution free). Therefore, the procedures
based on sample sign similarity are more useful when there is no information of the distribution of stock
market returns. Another application of sample sign similarity is related with the mean-variance optimal
portfolio in the case of unknown distribution. The estimation of Pearson correlations by sample sign
similarity is robust with respect to the distribution of returns and therefore is more suitable for portfolio
management. The theoretical foundation of the obtained results can be based on the approach developed
in Kalyagin et al. (2017) and is outside the scope of this paper. It will be a subject of further publications.
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